

Subject S	upersonic assessment HST	Date of Meeting 12 June 2019
Author F	renk Wubben, Andreas Bergmann	Place of Meeting Manching, Germany
Participants Luis Ruiz Calavera Roland Bacher	(Head of CoC Flight Physics) (Program Manager EF) <i>acting as deputy of</i> Achim Pittner (Head of Portfolio management &	Distribution Participants Susana Calvo
Juergen Reimann	<i>Combat Growth)</i> (Head Wind Tunnel Tests Aerodynamics – TEAGA)	Andreas Hövelmann Edgar Iliev Robert Osterhuber
Herbert Collins	(Aerodynamic Engineer Wind Tunnel Tests - TEAGA) (Aerodynamic Engineer Wind Tunnel Tests –	Reinhard Zankl
Bernd Schiefer Daniel Stolle Frank Helber Alexander Allen Mauro Molino	 TEAGA) (Head Aero Data) (Model Design) (Measurement Techniques) (Chief Engineer EF office) (Integration Manager EF Flight Physics) – <i>in</i> <i>a four-eye conversation with AB prior the</i> <i>meeting</i> 	Roy Gebbink Sinus Hegen Christophe Hermans Kerstin Huber Cor Jutten Kees Kapteijn Carsten Lenfers Stefan Melber
Andreas Bergmanı Stefan Melber Frenk Wubben	n (Director DNW) (DLR Institute AS) (Project Aerodynamics DNW)	Jan Takens Henri Vos

Subject

The	fol	lowing	agenda	was	fol	lowed
THC.	101		agenua	vv a J	IUI	lovecu

- 1. Intro (all)
- 2. Airbus EF midterm high speed test requirements (Airbus)

Weit to Alabara Defenses and Cases

- 3. General presentation HST (DNW)
- 4. Airbus EF past experience in HST -TP25 (Airbus)
- 5. Motivation for investigation of supersonic flow conditions HST (DNW)
- 6. HST Supersonic flow investigations by CFD (DLR)
- 7. HST Supersonic flow investigations by experiment (DNW)
- 8. Wider overview on Airbus Defence & Space wind tunnel planning (Eurofighter)
- 9. Wider overview on Airbus Defence & Space wind tunnel planning (including non-EF and low speed) (Airbus)
- 10. DNW capabilities other than HST (DNW)
- 11. Closure

1 Introduction

The meeting is organized at Airbus Defence and Space in Manching. The main goal for ADS is to assess whether HST can be a suitable candidate for testing the Eurofighter model in the period of 2020-2023. The goal for DNW is to find out what volume of testing is planned for and what services are requested. So far, ADS has tested in CALSPAN with the EF FC5-HS-Model (owned by NETMA). Political conditions as well as the currently very high capacity utilization of the CALSPAN tunnel with other customers than ADS mean that ADS is looking for alternatives in Europe. ARA is

Action

Minutes of meeting

seen as the competitor for HST. It is under investigation, whether this situation is now suitable to come to a successful and sustainable cooperation with ADS.	
See also presentation, ref. [2].	
2 Airbus EF midterm high speed test requirements	
Jürgen Reimann presents the midterm and high-speed test requirements. ADS envisages a test volume of 40,000 polars (2 x 5,000 per year) in the period of 2020-2023 in the framework of a next enhanced Eurofighter evolution plan. $0.4 < Ma < 1.3$.	
Apart from that tests are envisaged within the framework of the Airbus & Dassault cooperation for development of a New Generation Fighter (NGF), agreed upon in 2017 between France and Germany.	
These tests might come on top of the high work load with FC5. For these developments, ADS is asking for a suitable wind tunnel facility that is agile, flexible and quick. Total pressure requirements are $0.3 < Pt < 3$ bar. 3 bar to achieve Re for 1:4 scale (FC5) at Ma = 0.4.	
 Requirements for angle of attack are subdivided by the tasks Air-to-Air: -10° < AoA < 40° depending on Ma (ARA might be suitable because of the larger test section size) Max AoA @ Ma=1.05: 26° Max AoA @ Ma=1.2: 22° Air-to-Surface: -10° < AoA < 29° depending on Ma (HST might comply) Max AoA @ Ma=1.05: 22° Max AoA @ Ma=1.2: 19° 	
HST is interesting for ADS to do measurements. See also presentations, ref. [2] and [3]. In ref. [3] plots are shown during the meeting, however	
3 General presentation HST	
Frenk presents a brief overview of the DNW organization.	
4 Airbus EF past experience in HST	
Jürgen Reimann presents the past experiences of ADS in HST, ref [3].	
The Eurofighter model was tested in HST during a demonstration test in 2002. After that, ADS decided to execute the production tests at ARA and CALSPAN. Wind tunnel test results of ARA and CALSPAN were compared with flight test results and appeared to be in good agreement. Comparison with HST results appeared to be marginally acceptable between $Ma=0.85$ and 0.9. At $Ma=0.9$, the pitching moments results of HST appeared to be higher than the other wind tunnels (~0.008). In some cases, the HST results appeared to better than the other two tunnels (e.g. yaw stability in general, pitch at low Mach). HST results @ M1.05 far off.	
The experiences of ADS in 2002 showed the following main problems at HST:	
1. At Ma=1.05, pitching moment and rolling moment derivative to sideslip is deviating (above alpha 10 deg) from expectations for the FC5 test in HST (2002)	

2. Angle of attack range at supersonic Mach numbers is too limited (for larger models)

5 Motivation for investigation of supersonic flow conditions HST	
 Frenk Wubben presents the motivation for a supersonic assessment of HST by two approaches: CFD assessments by DLR Experimental assessments by DNW 	
Referring also to feedback from former ADS FC5 test (TP25) AoA limit partly too low	
 Sweep rate too low 	
 Unexpected results at Ma 1.05 in Cm and Cl_beta 	
6 HST Supersonic flow investigations by CFD	
Stefan Melber presents an overview of the flow physics in HST based on CFD assessments for MA number 1.2. The CFD results contributed to a better understanding of the flow control in the wind tunnel as well as the advantages of plenum suction on the flow quality.	
 EF FA5 geometry provided by ADS for the simulation, not FC5 model due to restrictions. Simulation at Ma 1.05 ongoing, results expected within two weeks Total wind tunnel pressure for simulation around 50kPa Jürgen Reimann: in reality rather at 65kPa 	
 Simulation done for free flight and wind tunnel Significant differences for critical case (high AoA, flaps deflected) due to overpressure in 	
plenum – Plenum pressure not corresponding to initially set static pressure	
 Conclusion: Passive plenum suction at HST not sufficient Possible solution: installation of active plenum suction 	
See also presentation, ref. [5].	
7 HST supersonic flow investigations by Experiment (DNW)	
Frenk Wubben presents an overview of experimental assessments that were performed. The main conclusions are:	
 The MA-number versus Alpha envelope can be extended by changing the re-entry geometry of the HST 	
 Although the available model sweep rate of the model is in the order of 0.9 deg/s, it cannot be used due to constraints in the hydraulic system of the compressor blade angle system that is limiting the Mach number control during a model sweep. This can be solved by an upgrade of the blade angle system. 	
• At Ma=1.05, subsonic flow is observed at the upper and lower wall near the model location. For angles of attack above 16 deg, the model shock impingement point at the wall is moving forward indicating that the model bow shock is moving forward also.	
Conclusions:	
 Alpha-Ma envelope increase: Change of re-entry geometry (available) Active plenum suction (requires high investment and calibration effort) 	
 Second throat to control terminating shocks Model sweep rate increase: 	
 Modification of hydraulic blade pitch system or installation of electrical system If feasible and fast response possible active plenum suction Posults at Ma 1.05 	

- Results at Ma 1.05:
 - More ventilation

 Boundary layer removal by suction Smaller model 	
See also presentation, ref. [4].	
ADS (Luis Ruiz) very much appreciates the large effort that has been spent by DNW / DLR.	
8 Wider overview on Airbus Defence & Space wind tunnel planning (Eurofighter)	
Based on the presentations, it is concluded that a demonstration test in HST is not opportune at this moment due to the uncertainties in flow physics at $Ma=1.05$ at higher angles of attack. ADS states that Mach number 1.05 is a very important Mach number as bridge between subsonic and supersonic flow conditions. Due to the earlier mentioned differences at $Ma=0.9$, there is no way to circumvent this. In addition, angle of attack levels up to at least 22 deg in supersonic flow are mandatory but cannot be guaranteed at the moment in HST. It is mandatory for a switch to HST that DNW solves the $Ma = 1.05$ problem.	
It is agreed that the uncertainties at Mach number 1.05 will be further studied with CFD by DLR. Half of July 2019, a meeting will be organized by DNW to provide feedback to ADS concerning the status.	DIWIDER
ADS has planned eight campaigns with Eurofighter model in the period 2020-2023, starting the first entry early to mid-next year. Two campaigns are already ordered at CALSPAN for 2020 because the suitability of HST is not clear at the moment and the deadline for orders in 2020 is due, but ADS seeks clarity on HST as soon as possible. So a maximum of six campaigns may take place in HST. Program wise it is planned to implement first EF Air-to-Air, later Air-to-Surface capabilities. Separate testing of these phases might be possible. Consistent data over AoA range is necessary, cutting AoA range is not an option.	
DNW states that updates in the HST facility are envisaged in case a business case exists. The decision has to be made this year. ADS confirmed that a letter of intent can be issued to show the interest in testing at HST. Based on the NA2 test in HST, ADS experiences a higher productivity. Improvements shall be in place mid of 2020 latest.	
DNW states that differences at Ma=0.9 might also be due to differences in wind tunnel corrections (support interference effects, wall effects and internal duct drag corrections). DNW will check which corrections were applied for the FC5 test in 2002 and whether improvements are possible. For the test a short sting was used but it was postulated that corrections for a longer sting version were applied. Effects of support interference might also be associed with CED.	DNW
ADS is willing to perform support interference calculations for the articulated boom. Stefan Melber will provide the geometry of the articulated boom in IGES format to ADS.	ADS DLR
Feedback concerning the NA2 test in HST in 2018 will be shifted to a later moment.	
9 Wider overview on Airbus Defence & Space wind tunnel planning (including non-EF and low speed)	
Jürgen Reimann and Luis Ruiz Calavera present a brief overview of non-Eurofighter high speed programs.	
 NGWS Contract German – French Concept (demo) study Planning 6/8 weeks high speed testing (within 18 months from now) Planning 6/8 weeks low speed testing (within 18 months from now) 	

E.

 Low speed model will be simple and will be tested in a cheap wind tunnel (not LLF), University is envisaged but NWB is a good alternative. Test will take place in 2020 / 21. 	
 EuroDrone The "EuroDrone" is a project of the German, French and Italian governments, to which Spain later also joined. The drone can be equipped with both rockets and surveillance technology. The development is to be finally decided before the end of this year. Test in low speed wind tunnel Propeller propulsion LLF is candidate Project will start early 2020. Test will be executed in 2020-2021 There is no model available yet Contrary to Talarion model, it is anticipated that this model will be a full model Short preparation phase is a challenge If possible, components from the past will be re-used. Eurofighter low speed Currently nothing planned (no FC3 in LLF) in the upcoming years Maybe maximum one week R&T/R&D projectd Diabolo and WeaponBay Approximately five campaigns in TWG over the next three years 	
10 DNW capabilities other than HST	
Andreas Bergmann explains the main capabilities of DNW that could be of interest for ADS:	
 Acoustic testing Propulsion integration testing Substantial infrastructure updates at NWB for TPS testing Promising feasibility study for electrically powered simulators Near ground testing Moving belt (80 m/s) at LLF Non-intrusive testing techniques PIV SPR for wing deflection and twist Helium filled soap bubbles ADS should decide whether the RTD (Test rig for quasi-steady rolling and spinning motion) at NWB is necessary for the upcoming programs, otherwise it might be scraped 	ADS
After this overview, Juergen Reimann closes the meeting.	
Activities after the meeting	
Andreas Bergmann discusses the contents of a Letter of Intent with Luis Ruiz Calavera. After this discussion, Stefan Melber and Andreas Bergmann have to leave for the airport.	
Frenk Wubben pays a visit to the Eurofighter model and the 1.5 inch TASK balance. ADS is considering to buy a 2 inch TASK balance for eventual testing in HST. Another possibility is to use the existing 1.5 inch TASK balance. In order to mount it to the model, a sleeve will be necessary. In that case, it seems to be necessary to make a new sting for proper mounting to the balance. Frenk presents a brief overview of the intended control updates in HST.	
Juergen Reimannn strongly encourages to start working on these updates in order to be ready in case the supersonic flow physics are settled.	

REFER	ENCES	
[1] [2]	"Agenda", Agenda.pptx; ADS: JR; 12.06.2019 "Introduction", Intro.pptx; ADS: JR; 12.06.2019	
[3]	"Airbus EF Past Experience in HST", EF past experience (wo NR data).pptx; ADS: JR; 12.06.2019	
[4]	"Assessment of the HST supersonic performance", EXP_HST_investigations_short.pdf; DNW: R. Gebbink, F. Wubben; received 14.06.2019	
[5]	"Results of HST CFD Simulations", hst_final_Airbus_v2.pdf; DLR: SM; received: 13.06.2019	
ABBR	EVIATIONS	
DNW:	German-Dutch Wind Tunnels	
DLR:	German Aerospace Centre	
ADS:	Airbus Defence and Space	
MAN:	Manching	
WT:	Wind Tunnel	
VVII: Mo:	Wind Lunnel Lest	
kPa [.]	kilo Pascal	
AoA:	Angle of attack	

Airbus Defence & Space "Wind Tunnel Roadmap" Evaluation of High Speed Tunnels for Fighter Testing Visit of DNW-HST to Manching 12.6.2019 Agenda

TEAGA-TL3, June 2019

Agenda

- 1. Introduction / Airbus EF high speed test requirements (Airbus)
- 2. General presentation DNW-HST high speed tunnel (DNW)
- 3. Airbus EF past experience in HST (Airbus)
- 4. Motivation for investigation of supersonic flow conditions HST (DNW)
- 5. HST Supersonic flow investigations by CFD (DLR)
- 6. HST supersonic flow investigations by Experiment (DNW)
- 7. HST performance (time, cost, quality) including review of Airbus NGWS test from 2018 (all)
- 8. Discussion on potential EF evaluation test program (program proposal will come from Airbus)
- 9. Open technical issues (balance, sting etc) (all)
- 10. Time schedule / milestones for way forward (all)

Optional, if time permits:

- 11. Wider overview on Airbus D&S wind tunnel planning (including non-EF and low speed) (Airbus)
- 12. DNW capabilities other than HST (DNW)

Airbus Defence & Space "Wind Tunnel Roadmap" Evaluation of High Speed Tunnels for Fighter Testing Visit of DNW-HST to Manching 12.6.2019 Introduction

TEAGA-TL3, June 2019

With the continuing development of the Euro Fighter ("EF") capabilities in the framework of ...

- Serving future core and export customer requirements (EF Long Term Evolution, "LTE")
- Potential capability enhancements with the replacement of aging GE "Tranche 1" EF aircraft
- Preparation to offer EF as a **GE** Tornado replacement
- Airbus D&S internal initiatives

... Airbus Defence & Space as major provider of EF high speed wind tunnel data forsees the need of testing up to **40.000 polars** in the M=0.4..1.3 range in **2020-23** (typically in campaigns of \approx 5000 polars each)

(German-French **FCAS/NGF** development work might come on top of that.)

High work load and long lead slot reservation times in suitable facilites world wide have impact on ...

> ... Airbus D&S targets

- Agile, quick and flexible response to customer requirements
- Significant reduction of capability enhancement implementation times

To gain additional flexibility in supplier selection, Airbus D&S currently evaluates facilities up to now not regularly in use with EF

"To gain additional flexibility in supplier selection Airbus D&S currently evaluates facilities up to now not regularly in use with EF..."

In general DNW-HST has been identified as a suitable facility

However

- during a 2002 EF campaign in HST ("TP25") severe shortfalls were found in
 - o data quality
 - o tunnel performance
 - agenda item 3
- during 2016-18 Mephisto and Diabolo tests in HST, Airbus D&S identified potential for tunnel performance improvements
 - > agenda item 7

DNW-HST reports to have analysed past problems and found solutions

> agenda items 4, 5, 6

Airbus DS target for todays meeting is to

Gather and compile all information necessary to come to a timely decision on whether an EF evaluation campaign in DNW-HST seems sensible.

Airbus Defence & Space "Wind Tunnel Roadmap" Evaluation of High Speed Tunnels for Fighter Testing Visit of DNW-HST to Manching 12.6.2019 Airbus EF Past Experience in HST

TEAGA-TL3, June 2019

Overview

In 2002 Airbus D&S had a short campaign in HST with the EF FC5 high speed model ("FC5 TP25")

- Compared to the results from 2 similar facilities (widely matching flight test) from the same time (same model build standard) in some aeras significant differences were found in HST
- In supersonics requested maximum AoA was not reached in HST

 \geq

Data Reliability

Compared to the results from 2 similar facilities significant differences were found in HST

Only a limited number of control settings is suitable for comparison All comparisons in "baseline" configuration (6 light air-to-air missiles, no tanks, no air-to-surface weapons)

Starting from M=0.85 (differences marginally acceptable) up to M=1.05 (outside this Mach range data compare well)

Pitch

- Higher level in pitch
- At M=1.05 different pitch characteristics
- Effect increases with positive flap
- slight dependency from leading edge setting
- (no canard data available)

Roll

• Loss in roll stability, coincident with pitch

Lift

• Minor order of magnitude, but different characteristics

Whole envelope

- Slightly less directional stability (here HST compares better to flight test)
- 10% less flap pitch power

HST performance

In supersonics requested maximum AoA was not reached in HST during TP25

 \triangleright

- The effect seems to be flap dependent
- Could also be leading edge dependent
- The effect is not store configuration dependent
- (There is no indication, that the effect could be loads driven) $\left[
 ight]$

•

•

•

EF high speed testing requirements

AoA limits

	current serial EF future enh			nhanced EF	("AMK")
	Air-Air	Air-Surface	Air-Air	3 Tanks	Air-Surface
Mach	Alpha max	Alpha max	Alpha max	Alpha max	Alpha max
0.4	29°	27°	40°	34°	29°
0.6	27°	23°	37°	31°	27°
0.7	27°	22°	36°	30°	26°
0.8	27°	20°	34°	30°	24°
0.85	27°	20°	33°	30°	24°
0.9	26°	20°	32°	30°	24°
0.93	26°	20°	31°	29°	24°
0.95	26°	20°	29°	27°	23°
0.975	25°	20°	29°	26°	23°
1.05	24°	20°	26°	23°	22°
1.1	23°	20°	25°	22°	21°
1.2	20°	19°	22°	19°	19°
1.3	<u>20°</u>	18°	22°	18°	- 18° -

Reynolds Number

typically: **10mio/m = const**

i.e. H≈1.3bar @ M=0.4 H≈0.7bar in supersonics

Total Pressure Requirements

ocasionally:

H≈3.0bar @ M=0.4 to achieve Re-No of 1:4 model @ LLF

H<0.7bar (downto 0.3) @M=0.85 to overcome external stores vibrations

target

PLOTS

HST, lacking high AoA capability, leading edge dependency

All data HST blue: le 0° green: le -10°

CAIRBUS DEFENCE & SPACE

HST, lacking high AoA capability, store configuration (in)dependency

All data HST blue: baseline green: 2 under-wing 1000l external fuel tanks

All rights reser

HST, lacking high AoA capability

All data HST

name]. All rights reserved

This document and its content is the property of Airbus Defence and Space. It shall not be communicated to any third party without the owner's written consent | [Airbus Defence and Space Company

Company Confidential

Assessment of the HST supersonic performance

12 June 2019

German-Dutch Wind Tunnels

Roy Gebbink and Frenk Wubben

Project managers DNW

Contents

Motivation

- □ Facility
- CFD assessments
- Experimental assessments
 - Extension Alpha Mach number envelope
 - HST versus CFD
 - Model sweep rate extension
 - Results at Ma=1.05
- Conclusions

German-Dutch Wind Tunnels

Feedback ADS, concerning the **FC5** test at HST:

- 1. Maximum ALPHA too low
 - 35° desired for all Mach numbers
 - or at least:
 - 25° at M=1.05;
 - 20° at M=1.20
- 2. Model sweep rate versus tunnel "eigenvalues" too slow
 - Actual sweep rate 0.2°/s at supersonic conditions
 - Desired sweep rate 1.0°/s

German-Dutch Wind Tunnels

Feedback ADS, concerning the **FC5** test at HST:

3. Unexpected results at Ma=1.05

- Cm at ALPHA>10°
- Clbeta at ALPHA>10°

$$Clbeta = \frac{Cl(\alpha, \beta 2 = 5 \, deg) - Cl(\alpha, \beta 1 = -5 \, deg)}{\beta 2 - \beta 1}$$

Company confidential

□ Assessment of HST's supersonic performance

- Via CFD (by DLR)
 - Develop insight in the test section's behavior
 - In-tunnel vs free flight comparisons
 - MA=1.05 and 1.20, ALPHA 0° and 20°
- Via an **experiment** (T9016)
 - Identify test envelope and limits (multiple MA, ALPHA)
 - Variation of the tunnel's re-entry geometry (diffusor height and setting of the slat extensions)
 - Provide validation data for CFD

German-Dutch Wind Tunnels

5

Contents

- Motivation
- Facility
- CFD assessments
- Experimental assessments
 - Extension Alpha Mach number envelope
 - HST versus CFD
 - Model sweep rate extension
 - Results at Ma=1.05
- Conclusions

German-Dutch Wind Tunnels

Company confidential

7

DNW-HST test section

8

Re-entry zone / start diffusor

Wall pressure measurements, into diffusor

Company confidential

German-Dutch Wind Tunnels

Test envelope

DNIN

Company confidential

Contents

- Motivation
- □ Facility

\Box CFD assessments \rightarrow Stefan Melber

- Experimental assessments
 - Extension Alpha Mach number envelope
 - HST versus CFD
 - Model sweep rate extension
 - Results at Ma=1.05
- Conclusions

German-Dutch Wind Tunnels

Contents

- Motivation
- □ Facility
- CFD assessments

Experimental assessments

- Extension Alpha Mach number envelope
- HST versus CFD
- Model sweep rate extension
- Results at Ma=1.05
- Conclusions

T9016 Test set-up

Wall pressure measurements

Model pressure measurements

German-Dutch Wind Tunnels

Company confidential

13

Location of slots and wall pressures

* In reality W6000 and W7000 are located on the oppositie wall

German-Dutch Wind Tunnels

16

Overview T9016

□ Type of test:

- Model pressure measurements
- Test section wall pressure measurements
- Diffusor wall pressure measurements (RAIL)
- Diffusor stagnation pressure measurements (TRIPOD)
- Plenum distributed pressure measurements
- Schlieren imaging
- Variation of tunnel Flap/Slat settings

Supersonic initial flow setting

No Mach control at alpha>0 deg

With Mach control at alpha>0 deg

Company confidential

Contents

- Motivation
- □ Facility
- CFD assessments

Experimental assessments

- Extension Alpha Mach number envelope
- HST versus CFD
- Model sweep rate extension
- Results at Ma=1.05
- Conclusions

Baseline vs alternative Flap/Slats

Baseline vs **alternative** Flap/Slats

Company confidential

Baseline vs **Alternative** Flap/Slats

Company confidential

Max Alpha - Mach number envelope

26

Intermediate conclusions

• /)

- PPL is a good indicator for the in/out flow through slots
- PPL can be controlled via BLDHK, but control diminishes the further the shock moves into the diffusor
- Flap/slat setting change allows for testing higher ALPHA

Contents

- Motivation
- □ Facility
- CFD assessments

Experimental assessments

- Extension Alpha Mach number envelope
- HST versus CFD
- Model sweep rate extension
- Results at Ma=1.05
- Conclusions

Intermediate conclusions

Δ

Current HST results (MA=1.20, step-by-step) are in good agreement with free flight CFD, at both ALPHA 0° and 20°

- During execution of the project, it was realized that the re-entry geometry as provided for CFD modelling is not in accordance with the actual HST geometry
 - This might be the reason for differences in behavior (e.g. back pressure effects on plenum pressure) between CHST and HST
 - Active plenum suction circumvents this problem in CHST

Contents

- Motivation
- □ Facility
- CFD assessments

Experimental assessments

- Extension Alpha Mach number envelope
- HST versus CFD
- Model sweep rate extension
- Results at Ma=1.05
- Conclusions

Controller cannot keep MA constant

What about the oncoming flow field?

- The nozzle dictates the oncoming flow field, but... when MA is lagging behind:
 - The plenum is effectively at over-pressure
 - Causing air to enter the test section through the slots
 - Meaning the effective cross section reduces
 - Meaning a shock occurs -upon opening of the slots
 - Meaning a rise of static pressure should be visible across / aft of the shock

Just like what happens in CHST...

Note: for this CHST example (with the WEAG model) the plenum is much more overpressured than in the HST

Note: for this CHST example (with the WEAG model) the plenum is much more overpressured than the HST

Intermediate conclusions

- It is essential to keep the plenum at the correct pressure
 - Otherwise air enter (or leaves) the test section
 - Which changes the oncoming flow field and model results
 - AGARD AG-49: a zero pressure difference from plenum to test section is furthermore needed to be shock reflection free on the walls
- The plenum pressure can be adjusted via the BLDHK, but the controller is unable to keep the plenum pressure constant during continuous sweep testing
 - The amount and speed at which BLDHK changes seems to be the limiting factor –currently.

Contents

- Motivation
- □ Facility
- CFD assessments

Experimental assessments

- Extension Alpha Mach number envelope
- HST versus CFD
- Model sweep rate extension
- Results at Ma=1.05
- Conclusions

Wall pressures: Model=WEAG, MA=1.20

Wall pressures: Model=WEAG, MA=1.10

XT [m]

- A. Model shock impinges at the same X-position up to ALPHA ~16° (on both upper and lower wall)
- B. Beyond ALPHA 16~20° the model shock starts moving forward with increasing ALPHA
- C. Subsonic flow region

Wall pressures, W6000

Wall pressures: Model=WEAG, MA=1.05

- B. Beyond ALPHA 12~16° the model shock starts moving forward with increasing ALPHA
- C. Subsonic flow region
- D. Same is visible on the sidewall, though the shock seems already further upstream than on the upper and lower walls

Wall pressures, W6000

Schlieren: Nozzle for MA=1.05, ALPHA=12

Company confidential

Shock impingement: MA=1.20, Alpha=12

Boundary layer thickness increase, adds to reduction in effective area \rightarrow local subsonic flow

German-Dutch Wind Tunnels

Intermediate Conclusions/Remarks

- The model shock impinges each wall at a constant position (per wall) with increasing ALPHA – initially
- From a certain higher ALPHA the shock impingement point starts moving forward in HST
- The ALPHA at which this movement starts depends on MA
 - At MA=1.05 near ALPHA~16; at MA=1.10 near ALPHA ~20; at MA=1.20 it is not visible (up to ALPHA=23)
- This phenomenon is not visible in TWG for other model
- Hypothesis: Local subsonic flow due to boundary layer growth
- CFD calculations for CHST at MA=1.05 are running

Max Alpha - Mach number envelope

Test envelope P0=50 kPa, BETA=0

Company confidential

Contents

- Motivation
- □ Facility
- CFD assessments
- Experimental assessments
 - Extension Alpha Mach number envelope
 - HST versus CFD
 - Model sweep rate extension
 - Results at Ma=1.05
- Conclusions

Final Conclusions (1/3)

1. Alpha – Mach number envelope

Alpha – Mach number envelope should be expanded

Current limitation

- Maximum blade pitch angle
- Re-entry geometry

Possible solutions

- Change re-entry geometry (available)
- Second throat to control terminating shock position
- Active plenum suction

Final Conclusions (2/3)

2. Model sweep rate extension

Mach controller not fast enough to keep Mach number constant during model sweep rate

Current limitation

Blade pitch rate is limiting factor

Possible solutions

- Modification of hydraulic blade pitch system or replacement with electrical control system
- Active plenum suction (not sure whether this is fast enough for control)

Final Conclusions (3/3)

3. Results at Ma=1.05

Unexpected results at Ma=1.05 for Alpha> 10 deg

Current limitation

 Local subsonic flow due to shock – boundary layer interaction (?)

Possible solutions

- More ventilation by
 - Slots in side walls
 - Perforated walls with 60 deg slanted holes
- Boundary layer removal by suction
- Smaller model (blockage < 1%)</p>

Possible next steps

□ Simulation of flow phenomena at Ma=1.05 for CHST

- Updating re-entry geometry
- Grid refinements at wall boundary layers
- Simulation perforated walls

Upgrading/replacement of blade angle hydraulic system

- □ Implementing plenum/boundary layer suction system
- □ Change wall ventilation

German-Dutch Wind Tunnels

Results of HST CFD Simulations

S. Melber-Wilkending

Institute of Aerodynamics an Flow Technology

DLR Braunschweig

Introduction

- Problem: Measurement results of Eurofighter Aircraft model at higher angles of attack / higher flap angles are off the expected results during measurements in HST wind tunnel at Ma = 1.2
- \checkmark Research support for DLR to answer:
 - ✓ Question I: Identification of the problem
 - ✓ Question II: Ideas for modifications to resolve the problem?

Introduction

- Problem: Measurement results of Eurofighter Aircraft model at higher angles of attack / higher flap angles are off the expected results during measurements in HST wind tunnel at Ma = 1.2
- → Research support for DLR to answer:
 - ✓ Question I: Identification of the problem
 - → Question II: Ideas for modifications to resolve the problem?
- → Approach by numerical simulation of big part of HST including aircraft model, support and plenum → "Computational"HST → CHST
- Because of unsymmetrical effects in measurement: simulation of "left" and "right" side necessary

- → Because of complexity of geometry → mesh generation with DLR-Solar mesh generator (hybrid unstructured, structured dominant)
- Numerical flow simulation with DLR-TAU Code (hybrid unstructured finite volume code)
- ✓ Reference data:
 - \checkmark Mach number = 1.2
 - → Static pressure = 28000 Pa
 - → Temperature = 236 K
 - → Density = 0.41 kg/m^3
- → Typical simulation time of one configuration on 384 Cores on CASE-Cluster with mesh size around 170 - 200 million points → two weeks
- Overall 60 configurations calculated (test-simulations not included) up to now …

Cases

Case EuroFighter	p_out	AOA/ Flap	p_suct	mp_suc	Slots SideW	p_p1	p_pl- p_stat	DrivePower@ T12 [MWatt]	Diffusor@ T12 [MWatt]	T12 [K]	dE_inout [%]	CL	CD	CM	Remarks
Tunnel empty & support Tunnel empty & support	50k 51k 52k 53k 54k	-/- -/- -/- -/- -/-	- - - -	- - - -	- - - -	28093 28400 28274 28799 29714	+93 +400 +274 +799 +714		- - - -	- - - -		- - - - -			ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high
Tunnel empty & support (at 20deg pos.)	50k	-/-	-	-	1 -	28596	+596	-	-	-	-	-			
Tunnel Tunnel Tunnel Tunnel	50k 50k 50k 50k	00/00 00/20 20/00 20/20	-	=		27930 27973 29761 30488	-70 -27 +1761 +2488	12.9 11.9 11.4 12.7	6.8 7.1 6.8 6.8	301.8 301.8 302.0 301.8	0.18 0.01 0.10 0.02	-0.0115 0.0368 0.2498 0.2846	0.0072 0.0153 0.0913 0.1186	0.0028 -0.0104 -0.0287 -0.0394	
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 50k	20/20 20/20	-	-	-	30509 30485	+2509 +2485	10.4 14.6	6.8 6.7	301.8 301.8	0.34 0.29	0.2829 0.2834	0.1178 0.1180	-0.0392 -0.0391	
Tunnel (without support) Tunnel (without support)	50k 50k	00/00 20/20	-	-	-	30428 29181	+2428 +1181	10.9 11.6	7.6 6.4	301.9 301.8	0.02 0.04	-0.0166 0.2866	0.0087 0.1184	0.0037 -0.0389	Removed Support> strong shock there Removed Support> strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k 40k 50k	20/20 20/20 20/20					-	12.0 18.5	9.2 15.7	302.4 301.0	0.03 0.01	0.2169 0.2169 0.2170	0.0857 0.0857 0.0857	-0.0239 -0.0239 -0.0239	Too strong shock in diffusor> Ma<1 Too strong shock in diffusor> Ma<1 Ma < 1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone	50k 50k	20/20 20/20	2	:	12	30412 29119	+2412 +1119	13.2 14.7	6.9 7.1	301.8 301.8	0.02	0.2840 0.2660	0.1161 0.1055	-0.0380 -0.0346	Ma < 1
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction	50k 50k 50k 50k 50k 50k	20/20 20/20 20/20 20/20 20/20 20/20	27.7k 27.8k 27.9k 27.95k 28k	2.49% 2.35% 2.31% 2.31% 2.37% 2.21%		27630 27731 27828 27882 27933	-370 -269 -172 -118 -67	13.3 12.9 13.6 13.1 13.5	6.7 6.3 7.1 6.7 7.0	302.0 302.0 302.0 302.0 302.0 302.0	1.55 1.54 1.39 1.40 1.32	0.2913 0.2913 0.2913 0.2913 0.2913 0.2913	0.1189 0.1189 0.1189 0.1188 0.1188 0.1189	-0.0403 -0.0402 -0.0401 -0.0400 -0.0400 -0.0400	Too much suction> p_plenum to low Too much suction> p_plenum to low Too much suction> p_plenum to low ok ok: No Regulation!> p_plenum right!
Tunnel & suction (MarkerMod / without support) Tunnel & suction (MarkerMod) Tunnel & suction & SideSlats	50k 50k 50k	0/0 20/20 20/20	28k 28k 28k	0% 2.79%	-	27956 27941 27738	-44 -59 -262	10.8 13.5	7.1 6.9	301.8	0.59	-0.0108 0.2911 0.2892	0.0072 0.1188 0.1190	0.0026 -0.0399 -0.0405	
Tunnel & suction (reentry off)	 50k	20/20	28k	9.87%		28494	+404	8.0	0.16	303.3	9.73	-			
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k 50k 50k	00/- 20/- 20/- 20/-				30263 26877 26630 31762	+2263 -1123 -1370 +3762	-	- - -	- - - -	-				Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 50k	00/- 20/-	-	-	-	28209 28579	+209 +579	12.0 11.8	7.0 6.4	301.6 301.6	0.01	-			
Tunnel Tunnel Tunnel Tunnel Tunnel	40k 40k 40k 40k	00/00 00/20 20/00 20/20	-	- - -		26778 26869 29543 30321	-1222 -1131 +1563 +2321	25.1 19.1 21.2 20.1	13.9 14.2 14.5 14.2	300.7 300.9 300.8 300.6	0.92 0.00 0.27 0.03	-0.0099 0.0351 0.2521 0.2839	0.0073 0.0151 0.0923 0.1183	0.0024 -0.0100 -0.0289 -0.0393	
Tunne1 Tunne1 Tunne1 Tunne1 Tunne1 Tunne1 Tunne1 Tunne1	50k 49k 48k 47k 46k 45k 45k 44k 30k	20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20				30488 30414 30363 30352 30351 30351 30351 30351	+2488 +2414 +2363 +2352 +2351 +2351 +2351 +2333	12.7 13.6 14.4 15.2 15.9 16.3 17.0 26.6	6.8 7.5 8.3 9.1 9.9 10.3 11.0 20.7	301.8 301.7 301.6 301.5 301.4 301.2 301.1 299.7	0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03	0.2846 0.2843 0.2841 0.2840 0.2840 0.2840 0.2840 0.2840 0.2839	0.1186 0.1185 0.1184 0.1184 0.1184 0.1184 0.1184 0.1184 0.1184	-0.0394 -0.0394 -0.0393 -0.0393 -0.0393 -0.0393 -0.0393 -0.0393 -0.0393	
Tunnel Tunnel	50k 50k	20/20 20/20	=	-	_	43431 31113	+15431 +3113	6.5 15.1	2.3	302.7 302.0	0.12 0.10	0.1978 0.2865	0.0771 0.1189	-0.0211 -0.0392	Ma < 1
Tunnel & suction Tunnel & suction	50k 50k	20/20 20/20	×××	×××	-	27502 28241	-498 +241	12.8 11.5	5.8 4.8	301.7 302.0	0.04 0.20	0.2911 0.2901	0.1187 0.1188	-0.0400 -0.0394	
Tunnel & Flap 50mm open Tunnel & Flap 50mm open & Slat partly closed	50k 50k	20/20 20/20	-	-	-	27738 32920	-262 4920	16.35 12.84	8.71 5.24	302.2 301.6	0.42 0.096	0.2908 0.2813	0.1188 0.1153	-0.0402 -0.0377	
Free Flight Free Flight Free Flight Free Flight	-	00/00 00/20 20/00 20/20	- - -	- - - -			- - - -	-	- - -	- - -	- - - -	-0.0106 0.0381 0.2509 0.2863	0.0070 0.0151 0.0917 0.1187	0.0026 -0.0107 -0.0298 -0.0401	b is not critical in free flight because no slots! b is not critical in free flight because no slots!
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)	- - - -	00/00 00/20 20/00 20/20		- - -		- - -	- - -		- - -	- - - -	- - - -	-0.0106 0.0381 0.2511 0.2860	0.0070 0.0152 0.0917 0.1183	0.0026 -0.0107 -0.0297 -0.0400	b is not critical in free flight because no slots! b is not critical in free flight because no slots!

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Tunnel regulation in HST & CHST

Tunnel regulation

- → Real tunnel (HST):
 - ✓ Measurement of plenum pressure
 - ✓ If plenum pressure differ from static pressure in test section → change in blade angle of drive → change of backpressure at the end of the diffusor
- ✓ Numerical wind tunnel (CHST):
 - ✓ Constant backpressure no regulation
 - Before simulation: variation of backpressure to find range in which Ma = 1.2 in test section can be reached

TATIS

Influence of back pressure

Empty test section / p = 50k

Empty test section / p = 51k

Empty test section / p = 52k

Empty test section / p = 53k

Empty test section / p = 54k

Case	p_out	AOA/ Flap	p_suct	mp_suc	Slots SideW	p_p1	p_p1- p_stat	ptot_in	ptot_out	dptot_ out_in	CL CD	CM	Case	Ma- Waves	p_pl= p_stat	No Supp	Remarks
Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support	50k 51k 52k 53k 54k	-/- -/- -/- -/-	-	-		28093 28400 28274 28799 29714	+93 +400 +274 +799 +714	67899 67899 67899 67899 67899 67899	52312 53231 54135 54994 55902	15587 14668 13764 12905 11997	- - - -				× - - -	-	ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high
Tannet empty a support (at 200eg post)	JOK	-/-		-		205901	+230	67899	52303	15596	-		b	×	-	-	
Tunnel Tunnel Tunnel Tunnel	50k 50k 50k 50k	00/00 00/20 20/00 20/20		- - -	- - -	27930 27973 29761 30488	-70 -27 +1761 +2488	67869 67899 67899 67899	52240 52218 52030 52006	15629 15681 15869 15893	-0.0115 0.0072 0.0368 0.0153 0.2498 0.0913 0.2846 0.1186	0.0028 -0.0104 -0.0287 -0.0394	a a b b	- - x x	× × - -		
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 50k	20/20 20/20	=	=	-	30509 30485	+2509 +2485	67899 67899	52009 52012	15890 15887	0.2829 0.1178 0.2834 0.1180	-0.0392 -0.0391	b b	× ×	-	-	
Tunnel (without support) Tunnel (without support)	50k	00/00	-	-	-	30428	+2428	67899	52315	15584	-0.0166 0.0087	0.0037	sup	×	-	х	Removed Support> strong shock there noved Support> strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	4			lr		ea	sir	ng k	bac	kpr	ressur	e le	ac	ls	to		p strong shock in diffusor> Ma<1 p strong shock in diffusor> Ma<1 <1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone	5			h	ıgł	ner	р	eni	JM	pre	essure	\rightarrow					< 1
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction				ir	าflเ	len	ice	or	ו flc	w	in tes	t se	cti	on			p much suction> p_plenum to law p much suction> p_plenum to law p much suction> p_plenum to law
Tunnel & suction	50k	20/20	28k	2.21%		27933	-67	67899	51907	15992	0.2913 0.1189	-0.0400	b->a		×	-	ok: No Regulation!> p_plenum right!
Tunnel & suction (MarkerMod / without support) Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	50k 50k 50k	0/0 20/20 20/20	28k 28k 28k	0% 2.79% 4.33%	- - ×	27956 27941 27738	-44 -59 -262	67899 67899 67899	52332 51870 51813	15567 16029 16086	-0.0108 0.0072 0.2911 0.1188 0.2892 0.1190	0.0026 -0.0399 -0.0405	a b->a b->a		× × *	-	
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k 50k 50k	00/- 20/- 20/- 20/-	-	-	-	30263 26877 26630	+2263 -1123 -1370	67899 67899 67899	52309 52356 52297	15590 15543	-		sup	- ×	2	×	Removed Support> strong shock there
Tunnel & double conehat & Support				-		31762	+3762	67899	52160	15739	-		sup sup	× ×	-	××	Removed Support> strong shock there Removed Support> strong shock there
	50k 50k	00/- 20/-	-	-		28209 28579	+3762 +209 +579	67899 67899 67899	52160 52311 52307	15588	-		sup sup a a	× × - -	-	× × - -	Removed Support> strong shock there Removed Support> strong shock there
Tunnel Tunnel Tunnel Tunnel Tunnel	50k 50k 40k 40k 40k 40k 40k	00/- 20/- 00/00 00/20 20/20 20/20	-			28209 28579 26778 26869 29543 30321	+3762 +209 +579 -1222 -1131 +1563 +2321	67899 67899 67899 67899 67899 67899 67899 67899	52160 52311 52307 43124 43103 42975 42946	15739 15739 15588 15592 24775 24796 24924 24953	- - - -0.0099 0.0073 0.0351 0.0151 0.2521 0.0923 0.2839 0.1183	0.0024 -0.0100 -0.0269 -0.0393	sup sup a a a b b	x 		× ×	Removed Support> strong shock there Removed Support> strong shock there
Tunnel Tunnel Tunnel Tunnel Tunnel	50k 50k 40k 40k 40k 40k 30k	00/- 20/- 00/00 00/29 20/00 20/29 20/29	-			28209 28579 26778 26869 29543 30321 30333	+3762 +209 +579 -1222 -1131 +1563 +2321 +2333	67899 67899 67899 67899 67899 67899 67899 67899 67899	52160 52311 52307 43124 43103 42975 42946 34643	15739 15588 15592 24775 24795 24796 24924 24923 33256	- - -0.0099 0.0073 0.0351 0.0151 0.2521 0.0923 9.2639 0.1183 0.2839 0.1184	0.0024 -0.0100 -0.0289 -0.0393 -0.0393	sup sup a a a b b b	x x	-	× ×	Removed Support> strong shock there Removed Support> strong shock there
Tunnel Tunnel Tunnel Tunnel Tunnel Free Flight Free Flight Free Flight	50k 50k 40k 40k 40k 40k 30k - - - -	88/- 28/- 89/98 28/98 28/98 28/28 28/28 28/28 80/86 89/28 29/28				28209 28579 26778 26869 29543 30321 30333 - - - -	+3762 +209 +579 -1222 -1131 +1563 +2321 +2333 - - - - - -	67899 67899 67899 67899 67899 67899 67899 67899 67899 67899 - - -	52160 52311 52307 43124 43103 42975 42946 34643 - - - -	15739 15588 15582 24775 24795 24924 24924 24953 33256 - - - -	- - - - - - - - - - - - - - - - - - -	0.0024 -0.0100 -0.0269 -0.0393 -0.0393 0.0026 -0.0107 -0.0298 -0.0401	sup sup a a b b b a b b b b b b b b b b b b b	× × · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	× ×	Removed Support> strong shock there Removed Support> strong shock there

AOA 20 / Flap 20 / p = 50k

AOA 20 / Flap 20 / p = 40k

AOA 20 / Flap 20 / p = 30k

Case	p_out ADA/ p_suct mp_suc Slots p_p1 p_p1- ptot_in ptot_out dptot_ CL CD CM Case Ma- p_p1= No Remarks Flap SideW p_stat out_in Waves p_stat Supp													
Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Tunnel empty & support (at 20deg pos.)	50k -/- - - - 28596 +596 67899 52303 15596 - b x													
Tunnel Tunnel	59k 00/00 - - - 27930 -70 67869 52240 15629 -0.0115 0.0072 0.0028 a - × - - 59k 00/20 - - - 27973 -27 67899 52218 15681 0.0368 0.0153 -0.0104 a - × - -													
Tunnel	20/03 2075 -175 - 67899 52038 15659 0.2498 0.0913 -0.0287 b × 50k 20/28 30488 +2488 67899 52006 15893 0.2846 0.1166 -0.0394 b ×													
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 20/20 - - - - - - - - - -													
Tunnel (without support) Tunnel (without support)	Reducing backpressure (below critical value for Ma = 1.2)													
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red.	\rightarrow plenum pressure is constant as the final shock is behind													
Tunnel & slots partly closec Tunnel & slots partly closec 	the reentry section & first part of diffusor goes supersonic													
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction	\rightarrow Backpressure cannot "change" plenum pressure any more													
Tunnel & suction (MarkerMod Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	nossible!													
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. sourc Tunnel & double conehat	\rightarrow Reducing backpressure further \rightarrow only power-consumption													
Tunnel & double conehat & Su Tunnel & double conehat & Su	does un because of stronger final shock & diffusor losses													
Tunne1 Tunne1														
Tunnel	40k 20/09 29543 + 553 57099 42975 24924 0.2521 0.9923 -0.8289 b ×													
Tunne1	30k 20/20													
Free Flight Free Flight Free Flight Free Flight	- 00/08 0.0381 0.057 0.0026 a - × × 0.0381 0.057 0.0026 a - × × 0.0381 0.051 - 0.0107 a - × × 0.0381 0.051 - 0.0107 a - × × 0.0381 0.051 - 0.0258 b - × × × 0.2580 0.051 - 0.0258 b - × × × 0.2580 0.051 - 0.0258 b × × 0.2580 0.051 - 0.0258 b × 0.2580 0.051 - 0.0258 b × 0.2580 0.051 - 0.0258 b ×													
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)	- 00/00 - - - - - - - - - - - - - - - 0.0166 0.0070 0.00266 a - x x x - 00/20 - - - - - 0.0166 0.0070 0.00266 a - x x - 00/20 - - - - 0.0381 0.0152 -0.0107 a - x x - 20/20 - - - - 0.25860 0.1163 -0.0497 b - x x b is not critical in free flight because no slots! - 20/20 - - - - 0.2860 0.1163 - x x b is not critical in free flight because no slots!													

 \checkmark Power consumption for case 20/20 (in the numerical domain)

Comparison to free flight

Comparison to free flight

Case Tunnel empty & support Tunnel empty & support (at 20deg pos.) Tunnel	p_out 50k 51k 52k 52k 53k 54k 50k 50k	ADA/ Flap -/- -/- -/- -/- -/- -/- -/- -/- -/- -/	p_suct - - - - -	mp_suc - - - - -	Slots Side// - - - - - -	p_p1 28093 28400 28274 28799 29714 	p_p1- p_stat +93 +400 +274 +799 +714 +596 -70 -27	ptot_in 67899 67899 67899 67899 67899 67899 67899	ptot_out 52312 53231 54135 54994 55902 52303 52240 52218	dptot_ out_in 15587 14668 13764 12985 11997 15596 15629 15681	CL - - - - - - - - - - - - - - - - - - -	CD	CM	Cas	e Ma- Wave - - - - - - - - - - - - - - - - - - -	p_p1= s_p_stat - - - - - - -	No Supp 	Remarks ok Exit pressure to Exit pressure to Exit pressure to Exit pressure to	o high o high o high o high
Tunnel Tunnel Tunnel (MarkerMod)	50k 50k 	20/00 20/20 20/20	=	-	- - -	29761 30488 30509	+1761 +2488 +2509	67899 67899 67899	52030 52006 52009	15869 15893 15890	0.24	198 0.091 346 0.118 329 0.117	3 -0.0287 6 -0.0394 	b b	× ×				
Tunnel (FullMarkerMod) Tunnel (without support) Tunnel (without support)	50k 50k 50k	20/20 00/00 20/20	- - -	-	- - -	30485 30428 29181	+2485 +2428 +1181	67899 67899 67899	52012 52315 52338	15887 15584 15561	0.28 -0.01 0.28	34 0.118 166 0.008 366 0.118	0 -0.0391 7 0.0037 4 -0.0389	b su su	х х х		 × ×	Removed Support Removed Support	> strong shock there > strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k 40k 50k	20/20 20/20 20/20				Α	\na	alys	sis c	of th	ne	"qı	Jest	io	n l	".			in diffusor> Ma<1 in diffusor> Ma<1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone	50k	comparison of free flight and in-)–						
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction	50k 50k 50k 50k 50k 50k														,	> p_plenum to low > p_plenum to low > p_plenum to low n!> p_plenum right!			
Tunnel & suction (MarkerMod / without support) Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	50k 50k 50k	0/0 20/20 20/20	28k 28k 28k	0% 2.79% 4.33%	- - ×	27956 27941 27738	-44 -59 -262	67899 67899 67899	52332 51870 51813	15567 16029 16086	-0.01 0.29 0.28	108 0.007 911 0.118 892 0.119	2 0.0026 8 -0.0399 0 -0.0405	a b- b-	- a - a -	× ×	-		
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k 50k 50k 50k	00/- 20/- 20/- 20/-	-	- - -	-	30263 26877 26630 31762	+2263 -1123 -1370 +3762	67899 67899 67899 67899 67899	52309 52356 52297 52160	15590 15543 15602 15739				su su su	о - х х х х	- - - -	× × × ×	Removed Support Removed Support Removed Support Removed Support	> strong shock there > strong shock there > strong shock there > strong shock there
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 50k	00/- 20/-	-	-	-	28209 28579	+209 +579	67899 67899	52311 52307	15588 15592	-			a	-	-	-		
Tunnel Tunnel Tunnel Tunnel	40k 40k 40k 40k	00/00 00/20 20/00 20/20	- - -		-	26778 26869 29543 30321	-1222 -1131 +1563 +2321	67899 67899 67899 67899 67899	43124 43103 42975 42946	24775 24796 24924 24953	-0.00 0.03 0.25 0.25	99 0.007 51 0.015 21 0.092 39 0.118	3 0.0024 1 -0.0100 3 -0.0289 3 -0.0393	a a b b	- - - 				
Tunne 1	30k	20/20	-	-	-	30333	+2333	67899	34643	33256	0.28	39 0.118	4 -0.0393	b	×	-	-		
Free Flight Free Flight Free Flight Free Flight		00/00 00/20 20/00 20/20			- - -		-				-0.01 0.03 0.25 0.25	106 0.007 381 0.015 509 0.091 363 0.118	0 0.0026 1 -0.0107 7 -0.0298 7 -0.0401	a a b b		× × × × ×	x x x x x	b is not critic: b is not critic:	al in free flight because no slots! al in free flight because no slots!
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)	- - -	00/00 00/20 20/00 20/20	-	- - -	- - -	-	-	- - -	= = -		-0.01 0.03 0.25 0.25	106 0.007 381 0.015 311 0.091 360 0.118	0 0.0026 2 -0.0107 7 -0.0297 3 -0.0400	a b b	-	× × × ×	× × × ×	b is not critica b is not critica	al in free flight because no slots! al in free flight because no slots!

Comparison to free flight AOA 00 / Flap 00 / Free Flight

Comparison to free flight AOA 00 / Flap 00 / p = 50k

Comparison to free flight AOA 00 / Flap 00 / Free Flight

Comparison to free flight AOA 00 / Flap 00 / p = 50k

Comparison to free flight

Comparison to free flight AOA 20 / Flap 20 / Free Flight

Comparison to free flight

AOA 20 / Flap 20 / p = 50k

Comparison to free flight AOA 20 / Flap 20 / Free Flight

Comparison to free flight AOA 20 / Flap 20 / p = 50k

Comparison to free flight

in der Helmholtz-Gemeinschaft

DLR

Comparison to free flight

Case	p_out	AOA/ Flap	p_:	suct	mp_suc	Slots SideW	p_p1	p_pl- p_sta	ptot_i t	n ptot_out	dptot_ out_in	CL	CD	CM	Case	Ma- Wave:	p_pl= s p_stat	No Supp	Remarks
Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support	50k 51k 52k 53k 54k	-/- -/- -/- -/-	-		-	- - -	28093 28400 28274 28799 29714	+93 +400 +274 +799 +714	67899 67899 67899 67899 67899 67899	52312 53231 54135 54994 55902	15587 14668 13764 12905 11997	- - - -			-	- - - ×	× - - -	- - - -	ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high
Tunnel empty & support (at 20deg pos.)	50k	-/-	1		-	1	28596	+596	67899	52303	15596	-			b	×		-	
Tunnel Tunnel Tunnel Tunnel	50k 50k 50k 50k	00/0 00/2 20/0 20/2	0 - 0 - 0 - 0 -		-		27930 27973 29761 30488	-70 -27 +1761 +2488	67869 67899 67899 67899	52240 52218 52030 52006	15629 15681 15869 15893	-0.0119 0.0368 0.2498 0.2846	0.0072 0.0153 0.0913 0.1186	0.0028 -0.0104 -0.0287 -0.0394	a a b b	- - x x	× × -		
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 50k	20/2 20/2	0 - 0 -		-	=	30509 30485	+2509 +2485	67899 67899	52009 52012	15890 15887	0.2829 0.2834	0.1178 0.1180	-0.0392 -0.0391	b	× ×	-	-	
Tunnel (without support) Tunnel (without support)	50k 50k	00/0 20/2	0 - 0 -		-	-	30428 29181	+2428 +1181	67899 67899	52315 52338	15584 15561	-0.0166 0.2866	0.0087	0.0037 -0.0389	sup sup	× ×	-	× ×	Removed Support> strong shock there Removed Support> strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k	20/2	0 -		- -			-	- -		-	0.2169	0.0857	-0.0239	-	Ma<	1 -	-	Too strong shock in diffusor> Ma<1 Too strong shock in diffusor> Ma<1 Ma<1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone				F	٦L	20	/00) a	na	20/	20	the	pi	enu	Im			-	
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction				p 2	ore 281	ess kP	a a	e is anc	s si I ca	gni ann	fica ot	ntly low	y h vere	igh ed c	ər du	th e 1	en :o		Too much suction> p_plenum to low Too much suction> p_plenum to low Too much suction> p_plenum to low ok ok: No Regulation!> p_plenum right!
Tunnel & suction (MarkerMod / without suppor Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots				k	ba	ck	ore	SS	ure	va	riat	ion	(ir	ו Cl	13	ЗT)!		
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k 50k	20/- 20/- 20/-			-	-	26877 26630 31762	-1123 -1370 +3762	67899 67899 67899	52356 52297 52160	15543 15602 15739	-	<u> </u>		sup sup	××××	-	x x x	Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 50k	00/- 20/-	-		-	-	28209 28579	+209 +579	67899 67899	52311 52307	15588 15592				a a	-	-	-	
Tunnel Tunnel Tunnel Tunnel	40k 40k 40k 40k	00/0 00/2 20/0 20/2	0 - 0 - 0 - 0 -		Ē	-	26778 26869 29543 30321	-1222 -1131 +1563 +2321	67899 67899 67899 67899	43124 43103 42975 42946	24775 24796 24924 24953	-0.0099 0.0351 0.2521 0.2839	0.0073 0.0151 0.0923 0.1183	0.0024 -0.0100 -0.0289 -0.0393	a a b	× ×			
Tunnel	30k	20/2	0 -	I	-	-	30333	+2333	67899	34643	33256	0.2839	0.1184	-0.0393	b	×	-	-	
				and the same same same -								0.0100	0 0070						
Free Flight Free Flight Free Flight Free Flight		00/0 00/2 20/0 20/2	0 - 0 - 0 - 0 -		-		-		-			0.0381	0.0070	0.0026 -0.0107 -0.0298 -0.0401	a a b		××××××	X X X X	b is not critical in free flight because no slots! b is not critical in free flight because no slots!

Comparison to free flight

Case	p_out	AOA/ Flap	p_suct	mp_suc	Slots SideW	p_p1	p_pl- p_stat	ptot_in	ptot_out	dptot_ out_in	CL	CD	CM	Case	Ma- Waves	p_pl= p_stat	No Supp	Remarks
Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support	50k 51k 52k 53k 54k	-/- -/- -/- -/- -/-	- - - -	- - - -	- - -	28093 28400 28274 28799 29714	+93 +400 +274 +799 +714	67899 67899 67899 67899 67899 67899	52312 53231 54135 54994 55902	15587 14668 13764 12905 11997	- - - -			- - -	- - - ×	× - - -	-	ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high
Tunnel empty & support (at 20deg pos.)	50k	-/-	-	-		28596	+596	67899	52303	15596	-			b	×		-	
Tunnel Tunnel Tunnel Tunnel	50k 50k 50k 50k	00/00 00/20 20/00 20/20				27930 27973 29761 30488	-70 -27 +1761 +2488	67869 67899 67899 67899	52240 52218 52030 52006	15629 15681 15869 15893	-0.011 0.036 0.249 0.284	5 0.0072 8 0.0153 8 0.0913 6 0.1186	0.0028 -0.0104 -0.0287 -0.0394	a a b b	- - × ×	× × -		
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 50k	20/20 20/20	-	-	-	30509 30485	+2509 +2485	67899 67899	52009 52012	15890 15887	0.282 0.283	9 0.1178 4 0.1180	-0.0392 -0.0391	b b	××	-	-	
Tunnel (without support) Tunnel (without support)	50k 50k	00/00 20/20	-	-	-	30428 29181	+2428 +1181	67899 67899	52315 52338	15584 15561	-0.016 0.286	6 0.008 6 0.1184	0.0037 -0.0389	sup sup	x x	-	××	Removed Support> strong shock there Removed Support> strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k 40k	20/20 20/20	-	Ē	-	-	2	Ē	-	-	0.216 0.216	9 0.0857 9 0.0857	-0.0239 -0.0239	-	Ma<1 Ma<1	-		Too strong shock in diffusor> Ma<1 Too strong shock in diffusor> Ma<1 Ma<1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone			Ag	joc	bd	COI	mp	ari	sor	n fro	om	fre	e fl	ig	ht		-	Ma < 1
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction			to mi	tur	ne	el e	xp	erii	mei	nt c	ori	rela dif	ates	5 M	/ith	1		Too much suction> p_plenum to low Too much suction> p_plenum to low Too much suction> p_plenum to low ok ok: No Regulation!> p_plenum right!
Tunnel & suction (MarkerMod / without s Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	minimum static pressure difference																	
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k	20/- 20/-	рс I			26630 31762	-1370 +3762	67899 67899	52297 52160	15602 15739			CIIC	4 1 1 1 sup sup	××	-	X X X X	Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 50k	00/- 20/-	-		-	28209 28579	+209 +579	67899 67899	52311 52307	15588 15592				a a	-		-	
Tunne1 Tunne1 Tunne1 Tunne1 Tunne1	40k 40k 40k 40k 40k	00/00 00/20 20/00 20/20	-		- - -	26778 26869 29543 30321	-1222 -1131 +1563 +2321	67899 67899 67899 67899 67899	43124 43103 42975 42946	24775 24796 24924 24953	-0.009 0.035 0.252 0.283	9 0.0073 1 0.015 1 0.0923 9 0.1183	0.0024 -0.0100 -0.0289 -0.0393	a a b b	- - × ×	- - -		
Tunnel	30k	20/20	-	-	-	30333	+2333	67899	34643	33256	0.283	9 0.1184	-0.0393	b	×	-	-	
Free Flight Free Flight Free Flight Free Flight		00/00 00/20 20/00 20/20					-	-	-	- - -	-0.010 0.038 0.250 0.286	6 0.0070 1 0.015 9 0.091 3 0.118	0.0026 -0.0107 -0.0298 -0.0401	a a b b		× × ×	x x x x x	b is not critical in free flight because no slots! b is not critical in free flight because no slots!
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)		00/00 00/20 20/00 20/20	-	- - -	- - -	-	-		- - - -		-0.010 0.038 0.251 0.286	6 0.0070 1 0.0153 1 0.091 0 0.1183	0.0026 -0.0107 -0.0297 -0.0400	a a b b	-	× × × ×	x x x x x	b is not critical in free flight because no slots! b is not critical in free flight because no slots!

- → Case 20/20: plenum pressure to high (compared to static pressure in test section) → how to reduce it?
- → Some other supersonic tunnels have plenum suction installed →
 solution for HST?
- \neg Suction: a ring in the backwall of the plenum

Case	p_out	ADA/ Flap	p_suct	mp_suc	Slots SideW	p_p1	p_p]- p_stat	ptot_in 	ptot_out	dptot_ out_in	CL	CD	CM	Case	Ma- Waves	p_pl= p_stat	No Supp	Remarks
Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support Tunnel empty & support	50k 51k 52k 53k 54k	-/- -/- -/- -/- -/-	- - - -	- - - -	- - - -	28093 28400 28274 28799 28799 29714	+93 +400 +274 +799 +714	67899 67899 67899 67899 67899 67899	52312 53231 54135 54994 55902	15587 14668 13764 12905 11997	- - - -			-	- - - × ×	× - - -		ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high
Tunnel empty & support (at 20deg pos.)	50k	-/-	-	- 1		28596	+596	67899	52303	15596	-			b	×		-	
Tunnel Tunnel Tunnel Tunnel	50k 50k 50k 50k	00/00 00/20 20/00 20/20	- - -	- - -	- - - -	27930 27973 29761 30488	-70 -27 +1761 +2488	67869 67899 67899 67899	52240 52218 52030 52006	15629 15681 15869 15893	-0.0115 0.0368 0.2498 0.2846	0.0072 0.0153 0.0913 0.1186	0.0028 -0.0104 -0.0287 -0.0394	a a b b	- - x x	× × -	- - -	
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 50k	20/20 20/20	-	-	-	30509 30485	+2509 +2485	67899 67899	52009 52012	15890 15887	0.2829 0.2834	0.1178 0.1180	-0.0392 -0.0391	b b	××	-	-	
Tunnel (without support) Tunnel (without support)	50k 50k	00/00 20/20	-	-	-	30428 29181	+2428 +1181	67899 67899	52315 52338	15584 15561	-0.0166 0.2866	0.0087 0.1184	0.0037 -0.0389	sup sup	x x	-	××	Removed Support> strong shock there Removed Support> strong shock there
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k 40k 50k	20/20 20/20 20/20	=	=	- - -	-	=	=	3	-	0.2169 0.2169 0.2170	0.0857 0.0857 0.0857	-0.0239 -0.0239 -0.0239		Ma<1 Ma<1 Ma<1			Too strong shock in diffusor> Ma<1 Too strong shock in diffusor> Ma<1 Ma<1
Tunnel & slots partly closed to nose Tunnel & slots partly closed to cone	50k 50k	20/20 20/20	-	-	-	30412 29119	+2412 +1119	67899 67899	51981 52067	15918 15832	0.2840 0.2660	0.1161 0.1055	-0.0380 -0.0346	-	Ma<1	-	-	Ma < 1
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction	50k 50k 50k 50k 50k 50k	20/2 20/2 20/2 20/2 20/2 20/2	27.7k 27.8k 27.9k 27.95k 28k	2.49% 2.35% 2.31% 2.37% 2.21%	- - - -	27630 27731 27828 27882 27882 27933	-370 -269 -172 -118 -67	67899 67899 67899 67899 67899 67899	51893 51896 51900 51903 51907	16006 16003 15999 15996 15992	0.2913 0.2913 0.2913 0.2913 0.2913 0.2913	0.1189 0.1189 0.1189 0.1188 0.1188 0.1189	-0.0403 -0.0402 -0.0401 -0.0400 -0.0400	b->a b->a b->a b->a b->a		- ~× × ×	- - - -	Too much suction> p.plenum to low Too much suction> p.plenum to low Too much suction> p.plenum to low ok ok: No Regulation!> p_plenum right!
lunnel & suction (MarkerMod / without support) Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	50k 50k 50k	0/0 20/20 20/20	28k 28k 28k	0% 2.79% 4.33%	- - ×	27956 27941 27738	-44 -59 -262	67899 67899 67899	52332 51870 51813	15567 16029 16086	-0.0108 0.2911 0.2892	0.0072 0.1188 0.1190	0.0026 -0.0399 -0.0405	a b->a b->a		× ×	-	
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 50k 50k 50k 50k	00/- 20/- 20/- 20/-	- - -	- - -	- - -	30263 26877 26630 31762	+2263 -1123 -1370 +3762	67899 67899 67899 67899 67899	52309 52356 52297 52160	15590 15543 15602 15739	- - - -			sup sup sup sup	- × ×	- - -	× × × ×	Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there Removed Support> strong shock there
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 50k	00/- 20/-	-	-	-	28209 28579	+209 +579	67899 67899	52311 52307	15588 15592	-			a a	-	-	-	
Tunnel Tunnel Tunnel Tunnel	40k 40k 40k 40k 40k	00/00 00/20 20/00 20/20	- - - -		- - -	26778 26869 29543 30321	-1222 -1131 +1563 +2321	67899 67899 67899 67899 67899	43124 43103 42975 42946	24775 24796 24924 24953	-0.0099 0.0351 0.2521 0.2839	0.0073 0.0151 0.0923 0.1183	0.0024 -0.0100 -0.0289 -0.0393	a a b b	- - - - -			
Tunnel	30k	20/20	-	-	- 1	30333	+2333	67899	34643	33256	0.2839	0.1184	-0.0393	b	×	-	-	
Free Flight Free Flight Free Flight Free Flight		00/00 00/20 20/00 20/20			- - -		-			- - -	-0.0106 0.0381 0.2509 0.2863	0.0070 0.0151 0.0917 0.1187	0.0026 -0.0107 -0.0298 -0.0401	a b b		× × ×	× × × ×	b is not critical in free flight because no slots! b is not critical in free flight because no slots!
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)		00/00 00/20 20/00 20/20			-	-	-	-	-	- - -	-0.0106 0.0381 0.2511 0.2860	0.0070 0.0152 0.0917 0.1183	0.0026 -0.0107 -0.0297 -0.0400	a a b b	-	× × ×	× × × ×	b is not critical in free flight because no slots! b is not critical in free flight because no slots!

Plenum suction AOA 20 / Flap 20 / Free Flight

AOA 20 / Flap 20 / p = 50k / suction p = 27.7k

AOA 20 / Flap 20 / p = 50k / suction p = 27.8k

AOA 20 / Flap 20 / p = 50k / suction p = 27.9k

AOA 20 / Flap 20 / p = 50k / suction p = 27.95k

AOA 20 / Flap 20 / p = 50k / suction p = 28k

AOA 20 / Flap 20 / p = 50k

Plenum suction AOA 20 / Flap 20 / Free Flight

in der Helmholtz-Gemeinschaft

DLR

Plenum suction \cdot Suction \rightarrow cp closer to free flight

- Very small difference on suction side
- Small difference on pressure side \rightarrow wall influence?

in der Helmholtz-Gemeinschaft

Case	p_out AOA/ p_su 	ct mp_suc Slots SideW	p_p1 p_p s	l- ptot_ir tat	ptot_out d 	lptot_ out_in	CL CD CM	Case	Ma- Waves	p_p1= p_stat	No Supp	Remarks								
Tunnel e Tunnel e Tunnel e Tunnel e	flow is	nearly	/ con	star	nt				- - - - - -	ж - - -		ok Exit pressure to high Exit pressure to high Exit pressure to high Exit pressure to high								
Tunnel empty & support (at 20deg pos.)	50k -/- -	1- 1-	28596 +59	67899	52303 1	5596	-			-	-									
Tunne1 Tunne1 Tunne1 Tunne1	50k 00/00 - 50k 00/20 - 50k 20/00 - 50k 20/20 -		27930 -70 27973 -27 29761 +17 30488 +24	67869 67899 51 67899 38 67899	52240 1 52218 1 52030 1 52006 1	5629 5681 5869 5893	-0.0115 0.0072 0.002 0.0368 0.0153 -0.010 0.2498 0.0913 -0.028 0.2846 0.1186 -0.039	8 4 7			Aerodynamic									
Tunnel (MarkerMod) Tunnel (FullMarkerMod)	50k 20/20 - 50k 20/20 -	= =/	30509 +25 30485 +24	89 67899 85 67899	52009 1 52012 1	5890 5887	0.2829 0.1178 -0.039 0.2834 0.1180 -0.039	2		coefficients nearly										
Tunnel (without support) Tunnel (without support)	50k 00/00 - 50k 20/20 -	= /	30428 +24 29181 +11	28 67899 31 67899	52315 1 52338 1	5584 5561	-0.0166 0.0087 0.008 0.2866 0.1184 -0.038	79		constant at different										
Tunnel & slots closed Tunnel & slots closed Tunnel & slots closed (red. diffusor)	50k 20/20 - 40k 20/20 - 50k 20/20 -	<u> </u> = /=		-			0.2169 0.0857 -1.023 0.2169 0.0857 -0.023 0.2170 0.0857 -0.023	9 9		suction pressure										
Tunnel & slots partly closed to nose	50k 20/20 - 50k 20/20 -	= / =	30412 +24 29119 +11	12 67899 19 67899	51981 1 52067 1	5918 5832	0.2840 0.1161 -0.038 0.2660 0.1055 -0.034	0 6 -	Ma<1	-	-	Ma < 1								
Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction Tunnel & suction	50k 20/20 27.7 50k 20/20 27.8 50k 20/20 27.9 50k 20/20 27.9 50k 20/20 27.9 50k 20/20 28k	k 2.49% - k 2.35% - k 2.31% - 5 2.37% - 2.21% -	27630 -37 27731 -26 27828 -17 27882 -11 27882 -11 27933 -6	8 67899 9 67899 2 67899 8 67899 8 67899 7 67899	51893 1 51896 1 51900 1 51903 1 51903 1 51907 1	6006 6003 5999 5996 5992	0.2913 0.1189 -0.040 0.2913 0.1189 -0.040 0.2913 0.1189 -0.040 0.2913 0.1189 -0.040 0.2913 0.1188 -0.040 0.2913 0.1189 -0.040	3 b-> 2 b-> 1 b-> 0 b-> 0 b->	a - a - a - a - a -	- - - - - - - - - - - - - - - - - - -	-	Too much suction> p_plenum to low Too much suction> p_plenum to low Too much suction> p_plenum to low ok ok: No Regulation!> p_plenum right!								
lunnel & suction (MarkerMod / without support) Tunnel & suction (MarkerMod) Tunnel & suction & SideSlots	50k 0/0 28k 50k 20/20 28k 50k 20/20 28k 50k 20/20 28k	0% – 2.79% – 4.33% ×	27956 -4 27941 -5 27738 -26	4 67899 9 67899 2 67899	52332 1 51870 1 51813 1	15567 16029 16086	-0.0108 0.0072 0.002 0.2911 0.1188 -0.039 0.2892 0.1190 -0.040	6 a 9 b-> 5 b->		× ×	-									
Tunnel & conehat Tunnel & conehat Tunnel & conehat (rot. source) Tunnel & double conehat	50k 00/- - 50k 20/- - 50k 20/- - 50k 20/- -		30263 +22 26877 -11 26630 -13 31762 +37	53 67899 23 67899 70 67899 52 67899	52309 1 52356 1 52297 1 52160 1	5590 5543 5602 5739		sup sup sup sup	-	-	×	Removed Support> strong shock there								
Tunnel & double conehat & Support Tunnel & double conehat & Support	50k 00/- - 50k 20/- -	= =	28209 +2 28579 +5	89 67899 79 67899	52311 1 52307 1	5588 5592	-	a a				ErecElight there is								
Tunne1 Tunne1 Tunne1 Tunne1 Tunne1	40k 00/00 - 40k 00/20 - 40k 20/00 - 40k 20/00 - 40k 20/20 -		26778 -12 26869 -11 29543 +15 30321 +23	22 67899 31 67899 53 67899 53 67899 21 67899	43124 2 43103 2 42975 2 42946 2	24775 24796 24924 24953	-0.0099 0.0073 0.002 0.0351 0.0151 -0.010 0.2521 0.0923 -0.026 0.2639 0.1163 -0.039	4 a 0 a 9 b 3 b				only a small error of								
Tunne 1	30k 20/20 -	- -	30333 +23	33 67899	34643 3	33256	0.2839 0.1184 -0.039	3 b	- -			1 70/ in lift								
Free Flight Free Flight Free Flight	- 00/00 - - 00/20 - - 20/00 -			=				6 a 7 a				1.7% IN III								
Free Flight	- 20/20 - 	- -		-	- -		0.2863 0.1187 -0.040	1 p 6 a		×	×	b is not critical in free flight because no slots!								
Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh) Free Flight (RefinedMesh)	- 00/20 - - 20/00 - - 20/20 -		- - - - - -	-			0.0381 0.0152 -0.010 0.2511 0.0917 -0.029 0.2860 0.1183 -0.040	7 a 7 b 8 b 	-	× × ×	××××	b is not critical in free flight because no slots! b is not critical in free flight because no slots!								

Г

- ✓ In the tested range from 27.7k to 28k there is no significant difference in the flow field, the massflow and aerodynamic forces …
- "Keep it simple": suction with static pressure of the test section is the best solution
- ✓ If the plenum pressure is already the static pressure of the test section for e.g. smaller angle of attack the suction there will be zero → fully automatic solution → suction should be used all the time

Conclusion

Conculsion

- ✓ Problems with Eurofighter at higher angles of attack / flap angles: result of additional slot (in)flow → change in effective cross section of test section → Mach number disturbed & cannot recovered with backpressure variation
- ✓ "Simple" & fully automatic solution:
 - → suction of the plenum with static pressure of the test-section → slot (in)flow is minimized → minimal Mach number disturbance → best comparison to free flight
 - \checkmark Suction rate for Ma = 1.2 & Eurofighter at AOA 20 deg ~ 12 kg/s

